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ABSTRACT
Determining the optimal coalition structure is a central prob-
lem in multi-agent systems. Two popular techniques include
dynamic programming and anytime search algorithms. Dy-
namic programming algorithms guarantee an optimal solu-
tion and have the best worst case running time. Anytime al-
gorithms are flexible as they can terminate before the search
has completed, but have a significantly poorer worst case
runtime. This paper provides an anytime dynamic program-
ming algorithm with the worst case runtime of dynamic pro-
gramming and the flexibility of anytime search.
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1. INTRODUCTION
Determining the optimal coalition structure is often stud-

ied in characteristic function games (CFGs). Given a set of
agents A, a CFG is defined by a function ν : 2A → R, that
assigns a value νC to each possible coalition C. The goal is
to find a coalition structure, partitioning of the agents, CS∗

that maximizes the sum of the values of its coalitions.
The majority of coalition structure generation algorithms

are anytime algorithms that search the space of all possible
coalition structures directly [3, 4]. These approaches are
capable of generating high quality solutions, but in the worst
case they examine all O(nn) coalition structures.

Rahwan and Jennings [2] advocated combining the worst
case runtimes of dynamic programming with the flexibility
of anytime search. They provide a parameterized combina-
tion of their anytime algorithm and their dynamic program-
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ming algorithm [2]. While their approach was empirically
successful, the best known bound on its runtime is O(nn).

This paper introduces an anytime dynamic programming
algorithm (ADP) with the worst case runtime of dynamic
programming and the flexibility of anytime search. During
preprocessing, ADP constructs a greedy solution. After pre-
processing, an iterative algorithm solves incrementally larger
subproblems exactly using dynamic programming. After r
iterations, the generated solution is within a factor of n − r
of the optimal. If run to completion, the run time is O(3n).

2. ANYTIME DYNAMIC PROGRAMMING
ADP employs two heuristics. A greedy solution is con-

structed and then iteratively larger subproblems are solved
with dynamic programming. If run to completion, dynamic
programming produces an optimal solution. If terminated
prematurely, the better of the greedy solution and the cur-
rent iterative solution is returned. It is counterintuitive that
selecting the better of two heuristic solutions can produce
guaranteed quality results. Lemma 1 allows such guarantees.

Lemma 1. Let CS∗ and CS∗
k+1 be optimal solutions to A

and to a subproblem of A of k +1 agents and C∗ be a maxi-
mum valued coalition then: νCS∗ ≤ (n−k)·max(νC∗ , νCS∗

k+1
).

During preprocessing, an initial solution, CSgreedy, is con-
structed in O(2n) time by greedily adding the coalition of
greatest value, out of the unassigned agents. By definition,
the greedy solution contains the coalition C∗.

After preprocessing completes, solutions to incrementally
larger subproblems are solved exactly with dynamic pro-
gramming. The pseudo-code is provided in Algorithm 2.1.
The quality guarantee follows directly from Lemma 1.

Theorem 2. After the solution to a subproblem of size
k + 1 is solved, the solution returned is guaranteed to be
within a factor of n − k of the optimal.

If the iterative algorithm is run until a performance ratio
of r is guaranteed, then the combined runtime of the prepro-
cessing and iterative phases is O(2n +3n−r). Thus, running
the algorithm to completion requires O(3n) time, the same
as the standard dynamic programming approach.

3. PERFORMANCE
ADP is compared with our previous algorithm [5] on two

different problem distributions in a manner similar to pre-
vious empirical studies [1]. All experimental results are for
25 agents and are averaged over 25 runs.
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Algorithm 2.1 Iterative Coalition Structure Generation

1: for k ∈ {2, · · · , n} do
2: for i = 1 to |An−k+1,n| do
3: for C ⊆ An−k+1,n : |C| = i and an−k+1 ∈ C do
4: f(C) ← max{f(C − C′) + f(C′) : C′ ⊂ C}
5: C(C) ← C′ where C′ maximizes (4)
6: end for
7: end for
8: end for
9: CS∗ ← An−k+1,n

10: for C ∈ CS∗ do
11: if C(C) 	= C then
12: CS∗

k+1 ← (CS∗ − C) ∪ {C(C), C − C(C)}
13: Goto 10 and start with new CS
14: end if
15: CSk ← best CSgreedy and CS∗

k+1 ∪{{a1}, · · · , {ak}}.
16: end for

The performance of both algorithms under a uniform dis-
tribution was compared. The value of each coalition C was
drawn uniformly from [0, 10 · |C|]. Figure 1 shows the re-
sulting performances. Our previous algorithm outperformed
ADP for this problem distribution and found the optimal so-
lution very quickly (on average less than 46 seconds). ADP
slowly improved its approximation over time.

Figure 1: Performance of both algorithms as a func-
tion of time under a uniform problem distribution.

Both algorithms were also compared under a normal dis-
tribution. The value of each coalition C was drawn from
a normal distribution with mean 15

4
and variance 1

16
. Fig-

ure 2 shows the resulting performances. While our previous
algorithm slowly improved its solution quality over time,
ADP generated the optimal solution immediately after pre-
processing terminated (approximately 7 seconds).

ADP’s superior performance for the tested normal prob-
lem distribution appears to stem from the fact that, under
the normal distribution, the optimal solution primarily con-
sisted of the singleton coalitions. However, our previous
algorithm was required to solve the entire problem to deter-
mine the optimal solution.

Figure 2: Performance of both algorithms as a func-
tion of time under a normal problem distribution.

4. CONCLUSIONS
This paper presented a new anytime algorithm for coali-

tion structure generation and compared it with our previ-
ously developed algorithm [5]. Both algorithms are based on
dynamic programming and employ different techniques for
extracting approximate solutions from partially completed
dynamic programming tables.

Both algorithms consist of a preprocessing phase followed
by a dynamic programming algorithm. The preprocessing
phase of ADP runs in O(2n) and the preprocessing phase of
our previous algorithm runs in O(n2n). Time required for
preprocessing large collections of agents can be a significant
factor in deciding which algorithm to use.

While our previous algorithm is guaranteed to generate
constant factor approximate solutions in less asymptotic time
than ADP, the relative performances of the two algorithms
under different problem distributions varies greatly.
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